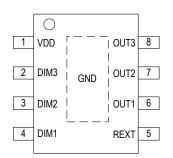


特点

- ◆ 内置稳压模块,输入电压范围: 5~40Vdc
- ◆ 本司专利的恒流控制技术
 - a) 输出电流外接电阻可调
 - b) 单通道最大输出电流 150mA
 - c) 片内输出电流偏差<±4%、 片间输出电流偏差<±5%
 - d) 恒流拐点电压低: I_{OUT}=150mA@V_{DS}=1.2V、VDD=5V
- ◆ 支持 PWM 调光功能
- ◆ 内置过温保护功能
- ◆ 封装形式: ESOP8

应用领域

- ◆ 建筑亮化工程
- ◆ 洗墙灯,线条灯
- ◆ LED 照明


概述

HM7504 是三通道 LED 恒流驱动控制芯片,使用本司专利的恒流控制技术,可实现低电压恒流开启且输出电流精度高。芯片内置 OUT 端口高压驱动模块、PWM 调光模块、过温保护模块、恒流驱动模块。输出电流由外接 Rext 电阻可设置为 20mA~150mA。

HM7504 可通过 DIM1/2/3 端口输入 PWM 信号分别实现 OUT1/2/3 端口调光。

芯片内置过温保护功能,当内部温度达到过温保护点 时降低输出电流,提升系统工作可靠性。

管脚图

内部功能框图

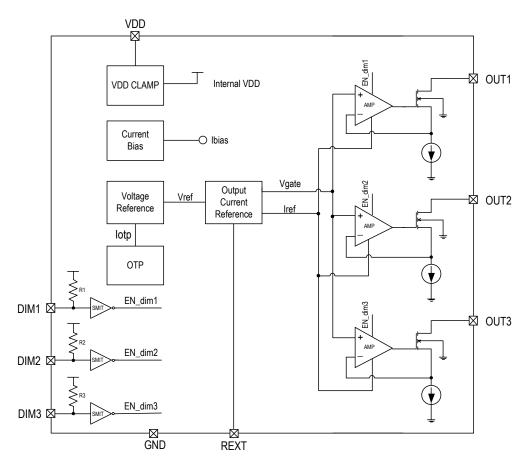


Fig. HM7504 内部功能框图

管脚说明

编号	名称	说明	
1	VDD	芯片电源输入端口	
2,3,4	DIM3/2/1	PWM 信号输入端口,用于调光,高电平有效(默认上拉)	
5	REXT	输出电流设置端口	
2	GND	芯片地	
6,7,8	OUT1/2/3	恒流输出端口	
衬底	GND	芯片地	

订购信息

订购型号	封装形式	包装方式		卷盘尺寸	
7 购至 5	到表形式	管装	编带	位	
HM7504	ESOP8	100000 只/箱	4000 只/盘	13寸	

极限参数

若无特殊说明,环境温度为25°C。

符号	说明	范围	单位
VDD	芯片工作电压	-0.4~5.5	V
V _{DIM}	逻辑输入电压	-0.4~VDD+0.4	V
ВVоит	OUT1/2/3 端口耐压	40	V
lout_max	OUT1/2/3 端口输出电流	160	mA
RθJA ^{注1}	热阻	65	°C/W
TJ	工作结温范围	-40~150	°C
Tstg	存储温度	-55~150	°C
V _{ESD}	HBM 人体放电模式	>3	KV

注 1: 散热表现与散热片尺寸、PCB 厚度与层数息息相关。实际应用条件下的热阻值会与测试值存在一定差异,使用者可选择适当的 封装与 PCB 布局,以达到理想的散热表现。

电气工作参数

若无特殊说明, VDD=5V, 环境温度为 25°C。

符号	说明	测试条件	最小值	典型值	最大值	单位
VDD	内部钳位电压	外部电源 VCC=12V,VCC 与 VDD 间限流电阻 R _D =1KΩ,R _{EXT} =4KΩ	5.1	5.3	5.5	V
	电源电压	VCC≤5V	3.0	-	5.0	V
1	势大山达	VDD=4.5V,I _{OUT} "OFF",REXT 悬空	-	0.4	-	mA
ldd	静态电流	VDD=4.5V,I _{OUT} "ON",R _{EXT} =4KΩ		1.0	-	mA
Vıн	输入信号阈值电压	DIM	0.7xVDD	-	-	V
VIL	期八信 5 	DIM	-	-	0.3xVDD	V
Іоит	OUT1/2/3 输出电流	-	20	-	150	mA
V	OUT1/2/3 恒流拐点电压	I _{OUT} = 20mA	-	0.5	-	V
V_{DS}		I _{OUT} =150mA	-	1.2	-	V
V _{REXT}	REXT 端口电压	R _{EXT} = 4KΩ	1.20	1.23	1.27	V
D	芯片内 IOUT 偏差	I _{OUT} = 60mA	-	-	±4	%
D _{IOUT}	芯片间 IOUT 偏差	I _{OUT} = 60mA	-	-	±5	%
%VS.V _{DS}		I _{OUT} =60mA, V _{DS} =1.0V~3.0V	-	0.5	-	%
%/VS.VDD	OUT1/2/3 端口 输出电流变化量	I _{OUT} =60mA,VDD =4.2V~5.2V	-	0.5	-	%
%VS.T _A .	柳田弋机文化里	I _{OUT} =60mA, T _A =-40°C~+100°C	-	5.0	-	%
R_ _{DIM}	DIM1/2/3 端口上拉电阻	-	-	13	-	ΚΩ
lleak	OUT1/2/3 端口漏电流	V _{DS} = 35V, I _{OUT} "OFF"	-	-	1	uA
T _{SC}	电流负温度补偿起始点 ^{±2}	-	-	140	-	$^{\circ}\!\mathbb{C}$

注 2: 电流负温度补偿起始点为芯片内部设定温度 140℃。

开关特性

若无特殊说明, VDD=5V, 环境温度为 25°C。

符号	参数	测试条件	最小值	典型值	最大值	单位
fым	有效调光频率	lour=60mA, DIM 设置输出电流 占空比 10%, △lour<±5%	-	-	100	KHz
tw	DIM 有效脉宽	Iоит=20mA,LED 起辉	30	-	-	ns
tрын	OUT1/2/3 对		-	200	-	ns
t _{PHL}	DIM1/2/3 延时 ^{注3}	I_{OUT} =60mA, R_L =30 Ω , V_L =5 V ,	-	190	-	ns
tr	OUT1/2/3 转换时间 ^{注4}	C _L =10pF	-	12	-	ns
t _f	UUI /2/3		-	10	-	ns

注 3、注 4: 如下图所示

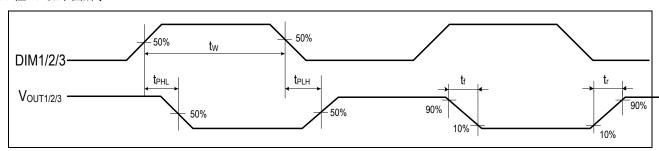


Fig. OUT1/2/3 端口开关响应测试曲线

恒流特性

- 1) HM7504 可实现低电压恒流开启且输出电流精度高,片内输出电流偏差小于±4%、片间输出电流偏差小于±5%;
 - 2) 如下图所示,达到恒流拐点后,输出电流受 OUT 端口电压 V_{DS} 影响极小。

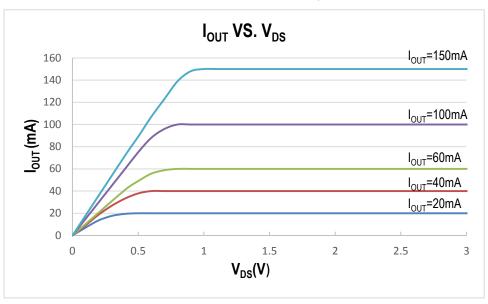


Fig. HM7504 输出电流 lout 与 OUT 端口电压 Vos 关系图

输出电流设置

HM7504的输出电流由外.RexT电阻设定,输出电流 lour与 RexT电阻值之间的计算公式如下:

$$I_{OUT}(mA) = \frac{V_{REXT}(V)}{R_{EXT}(\Omega)} \times 190 \times 1000$$

其中 V_{REXT} 为 REXT 端口电压, V_{REXT}=1.23V

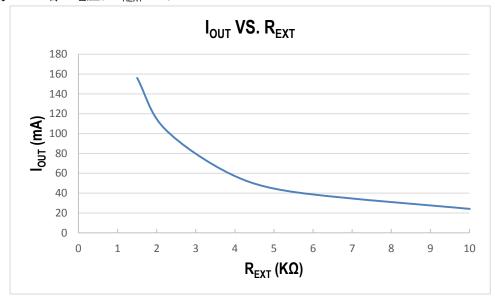


Fig. HM7504 输出电流 lour 与 Rext 电阻关系图

温度补偿

HM7504内置温度补偿功能,当芯片内部达到 140℃ 过温点时,开始减小输出电流,保证芯片温度不会过高,提升芯片工作可靠性。

典型应用

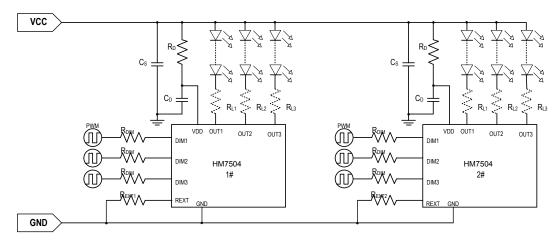


Fig. HM7504 典型应用方案图

上图中,VCC 是外部输入电源, C_8 是电源滤波电容, C_D 是芯片滤波电容,OUT1/2/3 端口负载的 LED 数量 N 由 VCC 电压决定, R_{L1} 、 R_{L2} 和 R_{L3} 分别是 OUT1、OUT2 和 OUT3 端口分压电阻, R_D 是芯片 VDD 端口的限流电阻, R_{EXT1} 和 R_{EXT2} 电阻分别用于设置 1#和 2#芯片输出电流值, R_{DIM} 电阻为 DIM1/2/3 端口保护电阻,PWM 信号通过 R_{DIM} 电阻输入 DIM 端口以实现调光功能。

电源滤波电容 C_S用于降低电源波动,可根据实际应用的负载情况选择 4.7~470uF,芯片滤波电容 C_D取值 100nF。

芯片工作电压 $VDD = VCC - I_{DD} \times R_D$,其中 I_{DD} 是芯片静态电流, R_D 阻值必须保证 VDD > 4V。 R_D 电阻越大,系统功耗越低,但系统抗干扰能力弱; R_D 电阻越小,系统功耗越大,工作温度较高,设计时需根据系统应用环境合理选择电阻 R_D 。不同的输入电源电压 VCC,限流电阻 R_D 的设计参考值如下表;

VCC(V)	12	15	24
$R_D(\Omega)$	2K	3K	5K

OUT 端口分压电阻 R_{L1} 、 R_{L2} 和 R_{L3} 用于限制 OUT1、OUT2 和 OUT3 端口电压,防止芯片工作温度过高, R_{L1} 、 R_{L2} 和 R_{L3} 阻值均计算如下:

$$R_{L}(\Omega) = \frac{VCC - V_{DS} - N \times V_{LED}}{I_{OUT}}$$

其中 V_{LED} 是 LED 灯导通电压降,V_{DS} 是芯片 OUT1/2/3 端口电压,l_{OUT} 是 OUT1/2/3 端口输出电流。V_{DS} 电压取值应高于 l_{OUT} 恒流拐点电压,应用时可根据恒流拐点及芯片功率适当选取分压电阻 R_L 的阻值。

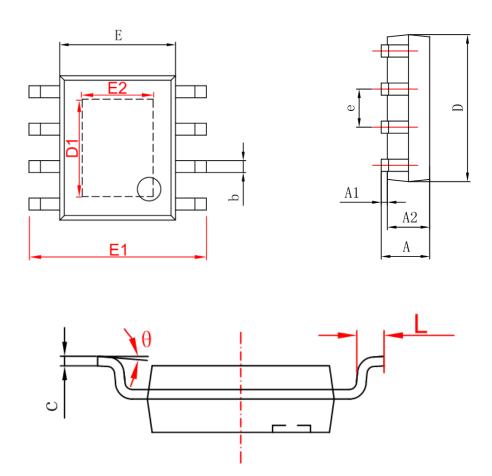
当 DIM1/2/3 端口悬空时,芯片无调光功能,即输出电流占空比 100%。

当 DIM1/2/3 端口输入 PWM 信号时,端口保护电阻 R_{DM}一般取值 510Ω。

封装焊接制程

明微电子所生产的半导体产品遵循欧洲 RoHs 标准, 封装焊接制程锡炉温度符合 J-STD-020 标准。

Temperature (°C)



封装厚度	体积 mm³<350	体积 mm³: 350~2000	体积 mm³≥ 2000
<1.6mm	260+0℃	260+0℃	260+0℃
1.6mm~2.5mm	260+0℃	250+0℃	245+0℃
≥2.5mm	250+0℃	245+0℃	245+0℃

封装形式

ESOP8

Symbol	Min(mm)	Max(mm)	
A	1.25	1.95	
A1	-	0.25	
A2	1.25	1.75	
b	0.25	0.7	
С	0.1	0.35	
D	4.6	5.3	
D1	3.12 供参考		
E	3.7	4.2	
E1	5.7	6.4	
E2	2.34 供参考		
е	1.270(BSC)		
L	0.2	1.5	
Θ	0°	10°	