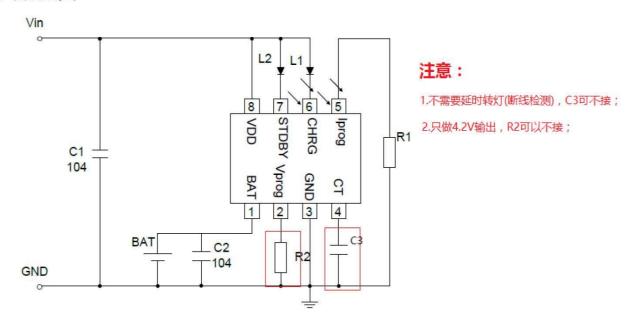


1、产品概述

HM4070 一款完整的单节锂离子电池充电器,带电池正负极反接保护,采用恒定电流/恒定电压线性控制。只需较少的外部元件数目使得 HM4070 便携式应用的理想选择。HM4070 可以适合 USB 电源和适配器电源工作。

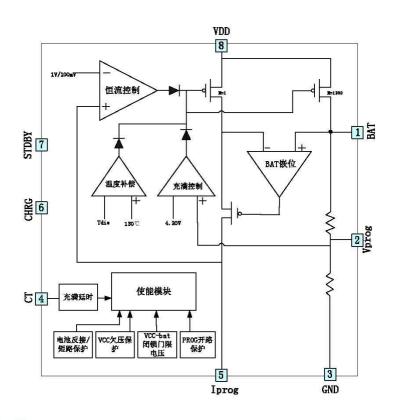
由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电流可通过一个电阻器进行外部设置。当电池达到 Vfloat (典型值 4.22V)之后,充电电流降至设定值 1/10,将自动终止充电。


当输入电压(交流适配器或 USB 电源)被拿掉时,HM4070 自动进入一个低电流状态,电池漏电流在 3uA 以下。HM4070 的其他特点包括充电电流监控器、欠压闭锁、自动再充电和两个用于指示充电结束和输入电压接入的状态引脚。

2、主要特点

- ◆ 预设 4.22V±1%充电电压;
- ◆ 充电电压外部可调,最高可接近输入电压;
- ◆ 涓流/恒流/恒压三段式充电, 充电电流外部可调, 最大充电电流可达 1A:
- ♦ 最大输入电压: 5.7V;
- ◆ 支持对 OV 电池充电;
- ◆ 待机电流小于 1uA;
- ◆ 短路保护功能;
- ◆ BAT-VDD 电压防倒灌功能;
- ◆ 电池正负极反接保护,避免电池极性接反烧毁芯片;
- ◆ 智能温控技术, 充电电流会随温度升高而降低, 在不会出现过热保护的前提下输出最大充电电流;
- ◆ 软启动限制了浪涌电流;
- ◆ 可直接从 USB 端口给单节锂离子电池充电;
- ◆ 自动再充电;
- ◆ 支持1灯模式和两灯模式;
- ◇ 高度集成,极少的外围元器件;
- ◆ ESOP-8 (HM4070E) 和DIP-8 (HM4070P) 两种封装

3、原理图


VIN	BAT	L1 (CHRG)	L2 (STDBY)		
断开	接入	灭	灭		
接入	断开	灭	亮		
接入	正在充电	亮	灭		
接入	充满	灭	亮		
接入	短路/反接	灭	灭		

4、引脚定义

引脚名 引脚 功能说明		功能说明		
			号	
24		BAT	1	电池正极
I BAT	VDD 8	Varoa	2	空载电压调整引脚: 1、R2不接时, Vfloat =4.22V
		Vprog		2、通过设置R2阻值,根据使用需求设置浮充门槛电压
² Vprog	STDBY 7	GND	3	电源负极(地端)
3 GND	CHRG 6	СТ	4	充满延时设定 (不需要延时转灯可不接)
4 CT	Iprog 5	Iprog	5	充电电流调整引脚
	7-3	CHRG	6	充电指示灯引脚
		STDBY	7	饱和指示灯引脚
		VDD	8	电源正极

5、电路内部结构框图

6、电气特性参数

(除特殊说明外, 所有参数均在室温下测得, 并以 GND 端电位为 0 电位)

符号	特性	测试条件	单位	Min	Тур	Max
系统参数						
VIN	输入电压范围		V	4.5	5	5.7
VIN 掉电监 测	VIN 从低到高	Vin>BAT	mV	Į	100	1
	VIN 从高到低	Vin>BAT	mV	l	30	_
Vfloat	浮充门槛电压	VDD=5V,R2 不接	٧	4.18	4.22	4.26
lbat	BAT 倒灌电流	Vcc=3.5V,Vbat=4.2V Vcc=0V, R2 不接	uA		±0.5 —	±5 1
VTRKL	涓流转恒流	VBAT 从低到高	V	Ţ	2.8	2000
VTRHYS	涓流充电迟滞电压		mV	P	100	_
VUV	Vcc 欠压闭锁门限	Vcc 从低到高	V	Ī	3.7	-
VUVHYS	Vcc 欠压闭锁迟滞		mV	13 	200	S ******
Vmsd	手动停机门限电压		V	1	1.2	-
VmsdHYS	手动停机迟滞电压		mV	-	50	

Vprog1	涓流时 PROG 电压		V	·—	0.1	-
Vprog2	大电流时 PROG 电压		٧	_	1	-
OTR	过温恢复 (恒温模式)	VDD=5V	°C	_	130	i .

7、应用信息

7.1、正常充电循环

当 Vcc 引脚电压升至 UVLO 门限电平以上且在 PROG 引脚与地之间连接了一个精度为 1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果 BAT 引脚电平低于 2.8V,则充电器进入涓流充电模式。在该模式中,HM4070 提供约 1/10 的设定充电电流,以便将电流电压提升至一个安全的电平,从而实现满电流充电。 当 BAT 引脚电压升至 2.8V 以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电电流。当 BAT 引脚电压达到最终浮充电压(典型值 4.22V)时,HM4070 进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的 1/10,充电循环结束。

7.2、充电电流的设定

充电电流是采用一个连接在 PROG 引脚与地之间的电阻器来设定的。设定电阻器和充电电流采用下列

1200

公式来计算:根据需要的充电电流来确定电阻器阻值,公式一:R = Ibat 例一:当需要设置充电电流为IBAT

1200

=0.2A 时,采用公式一计算得: R = 0.2 =6000 Ω 即 RPROG=6k Ω 。最大充电电流可设置到 1A,但在大于 0.5A 应用中,芯片热量相对较大,温度保护会减小充电电流,不同环境测试电流与公式计算理论值也变的不完全一致。客户应用中,可根据需求选取合适大小的 RPROG。

7.3、充满电压的设定

HM4070 浮充门槛电压是通过调节 Vprog 引脚的电阻器来设定的。设定电阻器和充满电压采用下列公式来计算:根据需要的充满来确定电阻器阻值,当设置充满电压高于 4.22V (典型值), Vprog 到地接一个电

阻 R,采用 公式一: R = Vprog-4.20 例一: 当需要设置充满电压为 Vprog=4.5V 时,采用公式一计算

2.20 * 265000

得: R=-4.5-4.20 =1.940M Ω 。当设置充满电压低于 4.2V,Vprog 到 BAT 接一个电阻 R,采用公式二:

R//265000 = 2.2 ,例二,当需要设置充满电压为 Vprog=3.6V 时,采用公式二计算得:

 $R = 618K\Omega$

7.4、关断延时设定

HM4070 充满关断延迟是通过调节 CT 引脚的电容器来设定的。设定电容器和关断延时采用下列公式来计算: 根据需要的关断延时来确定电容容值,

=20.50nF

7.5、电池反接保护功能

具备锂电池反接保护功能,当锂电池电池正负极反接于 HM4070 Vbat 输出引脚,HM4070 会停机显示 故障状态,两个 LED 灯全灭,此时反接的锂电池漏电电流小于 0.5mA。将反接的电池正确接入,HM4070恢复正常充电状态。 电池反接情况下,电源电压加电池电压不能超过 8V。

7.6、充电状态指示器(CHRG STDBY)

HM4070有两个漏极开路状态指示输出端,CHRG 和 STDBY。当充电器处于充电状态时,CHRG 被 拉到低电平,STDBY 处于高阻态。当电池反接或者短路时,CHRG 和 STDBY 都处于高阻态,两个灯全灭。 当不用状态指示功能时,将不用的状态指示输出端接到 GND。

7.7、热限制

如果芯片温度试图升至约 130℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流。该功能可防止 HM4070 过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏 HM4070 的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

7.8、欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 VDD 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVLO 电路将使充电器保持在停机模式。如果 UVLO 比较器发生跳变,则在 VDD 升至比电池电压高 50mV 之前充电器将不会退出停机模式。

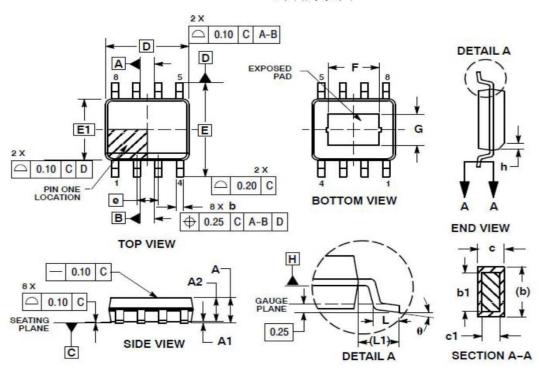
8、PCB设计指引

在设计 HM4070 PCB 时,需要遵循以下指南:

VDD 的旁路电容需要紧靠芯片 VDD 和 GND 引脚。

Vbat 的旁路电容需要紧靠芯片 Vbat 和 GND 引脚。

R2 需要紧靠芯片 Vprog, 以减少对 Vfloat 的干扰。


9、静电防护措施

MOS 电路为静电敏感器件,在生产、运输过程中需采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- ◆ 操作人员要通过放静电腕带接地;
- ◆ 生产设备外壳必须接地;
- ◆ 装配过程中使用的工具必须接地;
- ◇ 必须采用导体包装或抗静电材料包装或运输。

10、封装信息

ESOP-8 封装外观图

