

高效率、低能耗非隔离稳压器HM2743

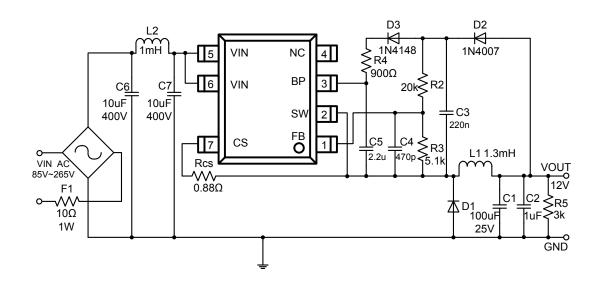
概述

HM2743是一款非隔离型稳压器。内部集成650V MOSFET。其应用外围简单,为小功率电源应用提 供了低成本,高效率的解决方案。

HM2743也是一款具有省电模式的稳压器。当负载下降时,峰值电流与开关频率随之减小。因此在轻载时系统仍然能保持高效率。同时其内部还集成了,欠压锁定,过温保护,过载保护,短路保护,开环保护等功能。HM2743支持包括升压,升降压,反激等多种拓扑结构。

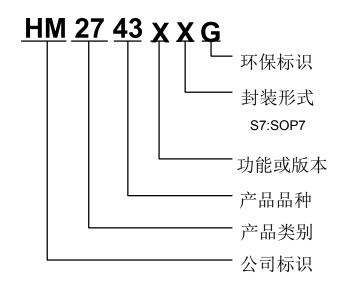
特点

- 输出最大功率5W
- 内置650V/10Ω MOS管
- 空载功耗<100mW
- 内置热保护自动恢复功能
- 最高频率 70kHz
- 内置高压启动
- 内部集成过载保护、短路保护功能
- 内部集成开环保护、过温保护
- 内部集成 BP 欠压锁定和过压保护功能

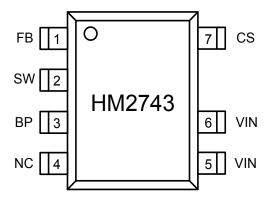

应用场合

- 家用电器
- 工业电源
- 待机电源

封装形式


• SOP-7

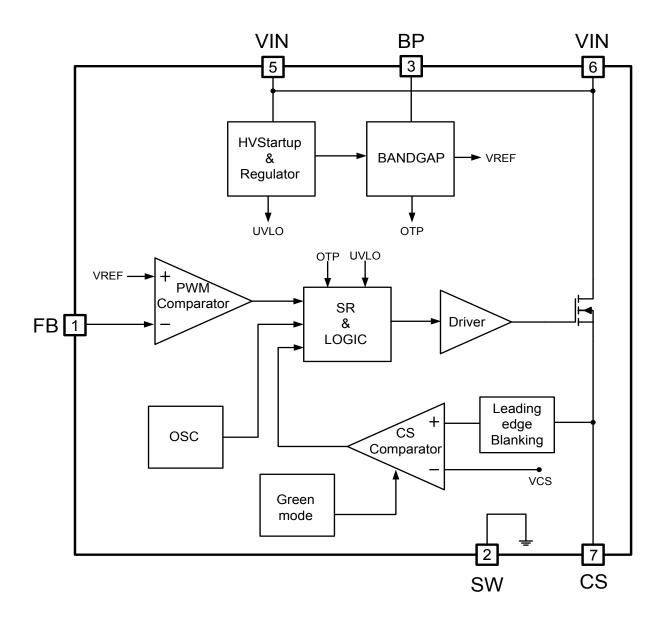
典型应用方案



选购指南

产品型号	产品说明	
HM2743	封装形式: SOP7	

芯片脚位图



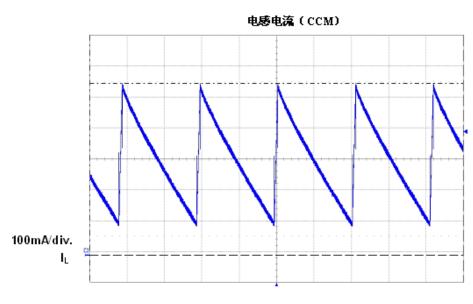
脚位功能说明

PIN 脚位	符号名	功能说明	
1	FB	稳压器反馈管脚	
2	sw	系统开关管脚、芯片地、功率 MOS 管的源极	
3	ВР	芯片电源	
4	NC	无连接	
5,6	VIN	系统输入管脚、功率 MOS 管的漏极	
7	cs	电流采样引脚	

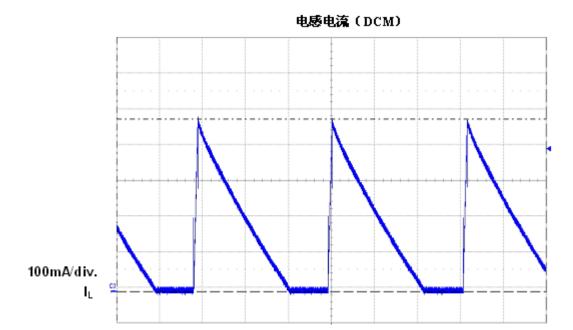
芯片功能示意图

绝对最大额定值

参数	极限值	单位
SW与VIN管脚间电压	-0.3~650	V
FB、CS管脚电压	-0.3~6.5	V
BP管脚电压	-0.3~40	V
储存温度范围	-60∼+150	C
工作温度范围	-40~125	V

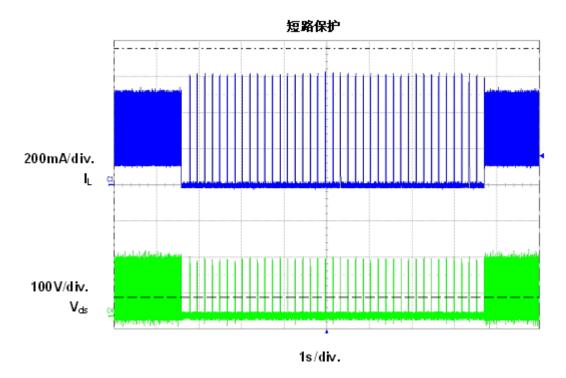


电气参数(正常情况下,环境温度为 25 ℃)

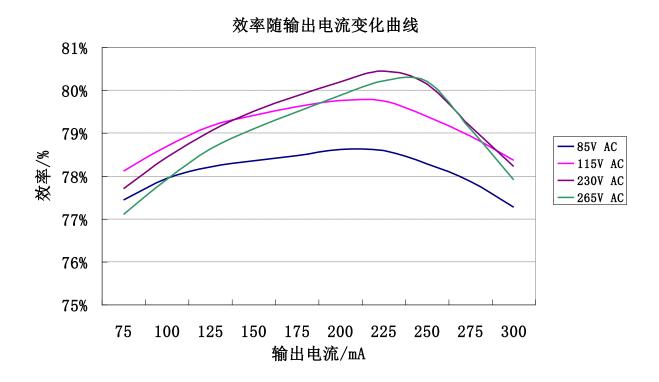

符号	参数	测试条件	最小值	典型值	最大值	单位
I _{CHRG}	VIN 内部充电电流		2.5	3.5	4.5	mA
V _{BD}	VIN 端口耐压		650	-	-	V
I _{BPQ}	BP 端口静态电流	BP=V _{STARTUP} +0.1V , FB=2V	-	730	-	uA
I _{BPQN}	BP 端口静态电流(无开关)	BP=V _{STARTUP} +0.1V , FB=3V	-	230	-	uA
V _{STARTUP}	BP 启动电压		9.2	10.2	11.2	V
V _{RESTART}	BP 再启动电压		8.3	9.3	10.3	V
V_{BPOFF}	BP 关断电压		-	3.1	-	V
V _{LIMIT}	BP 过压嵌位电压		10.2	11.2	12.2	V
V_{PEAK}	CS 峰值电压		430	480	530	mV
T _{LEB}	前沿消隐时间		-	350	-	ns
V_{FB}	反馈电压		2.60	2.65	2.70	V
T _{MAXON}	最大导通时间		-	26	-	us
T _{MINOFF}	最小关断时间		_	15	-	us
T _{SCP}	短路保护延迟时间		-	150	-	ms
V _{OLP}	FB 过载保护电压	BP=V _{STARTUP} +0.1V	1.4	1.58	1.65	V
T _{SD}	热关断温度		-	155	-	°C

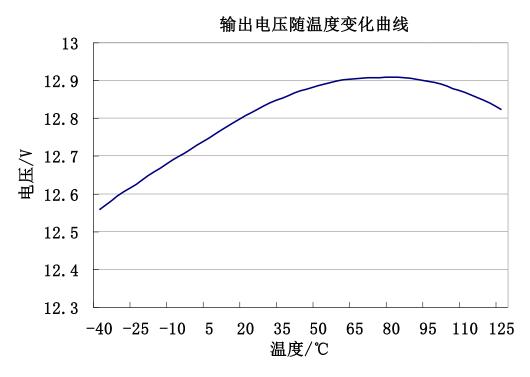
典型性能参数

 V_{IN} = 230V AC, V_{OUT} = 12V , I_{OUT} = 300mA, L=1.3mH, C=100 $\mu F,\, T$ =25 $^{\circ} \! {\rm C}$



20μs/div.


20μs/div.


 V_{IN} = 115V AC, V_{OUT} = 12V, L=1.3mH, C=100 μ F, T=25 $^{\circ}$ C

 V_{OUT} = 12V, L=1.3mH, C=100 μ F, T=25 $^{\circ}$ C

原理描述

HM2743 内部集成 650V 高压 MOS 管,芯片上电时高压启动通过 VIN 为 BP 电容充电,当 BP 电压高过开启电压后芯片开始工作。然后将内部高压功率 MOS 打开,从而有电流流过 CS 电阻,当 CS 脚电压高于内部比较基准 0.48V时,将内部高压管关断。如此往复不断给输出电容提供能量,当输出电压达到预设值时,FB 通过与内部基准 2.65V 比较后,周期性关断内部高压 MOS 管,从而达到控制系统能量平衡的目的。

反馈电阻与输出电压设定

R2、R3 为反馈电阻, 合理分配 R2 与 R3 的值, 使得 FB 管脚电压维持在 2.65V。系统输出电压的值由反馈电阻 决定, 计算公式如下:

$$V_{out} = 2.5V \times \frac{R_2 + R_3}{R_2}$$

其中, V_{out} 为系统的输出电压。建议 R_3 的取值不要太大,最好在 $4k\Omega$ 到 $10k\Omega$ 之间。

反馈电容选取

反馈电容C4起到了采样维持的功能。若该电容过小,接小负载会影响稳压性能,若该电容过大,则会影响系统功能。C4电容值的选取范围如下:

$$\frac{1}{2} \frac{V_{\text{out}}}{R_2 + R_3} \frac{C_o}{I_o} \leqslant C_{FB} \leqslant \frac{V_{\text{out}}}{R_2 + R_3} \frac{C_o}{I_o}$$

电感参数选取

HM2743 有最小关断时间,它能够决定最大输出功率。随着电感 L1 的增大,系统的最大输出功率也会随之变大,最大输出功率的公式如下:

$$P_{\text{omax}} = V_{\text{O}}(I_{\textit{peak}} - \frac{V_{\text{O}} * T_{\text{minoff}}}{2L}) \text{ , CCM}$$

$$\mathbf{P}_{\mathrm{omax}} = \frac{1}{2} L^* I_{peak}^{2} \frac{1}{T_{\mathrm{minoff}}}$$
 , DCM

 P_{omax} 为最大输出功率, V_O 为输出电压, I_{oeak} 为电感的峰值电流, I_{minoff} 为最小停机时间, I_{oeak} 为电感。

选取电感的原则在于,当 Ipeak 与 Tminoff 的值不变时,改变电感值,使最大输出功率的最小值大于额定功率。

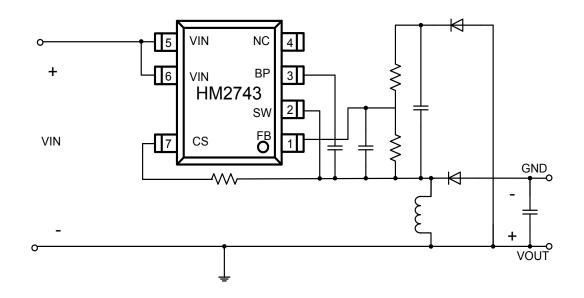
整流二极管选取

二极管 D1 的反向电压要大于最大输入电压,流过其的电流由输出电流决定。除此之外,二极管的反向恢复时间会影响系统运行时的效率。在 CCM 工作模式下,反向恢复时间最好小于 35ns; DCM 工作模式下,反向恢复时间小于 75ns。

输出电容选取

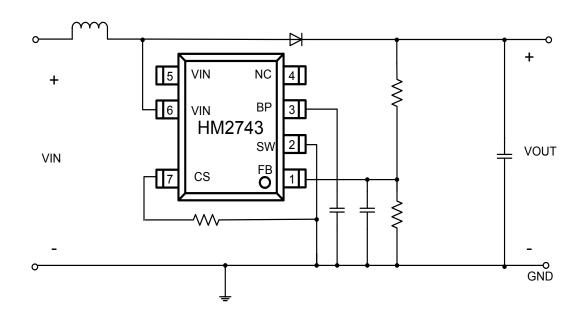
输出电容C1可以稳定输出电压,减小纹波。输出电压的纹波公式如下:

$$\begin{split} \mathbf{V}_{\mathrm{CCM_ripple}} &= \frac{\Delta \mathbf{I}_{\mathrm{L}}}{8\mathbf{f}_{\mathrm{s}}\mathbf{C}_{\mathrm{o}}} + \Delta \mathbf{I}_{\mathrm{L}}\mathbf{R}_{\mathrm{ESR}} \;,\;\; \mathrm{CCM} \\ \\ V_{DCM_ripple} &= \frac{I_{o}}{f_{s}C_{o}}(\frac{I_{\mathit{pk}}\text{-}I_{o}}{I_{\mathit{pk}}})^{2} + I_{\mathit{pk}}R_{\mathit{ESR}} \;,\;\; \mathrm{DCM} \end{split}$$

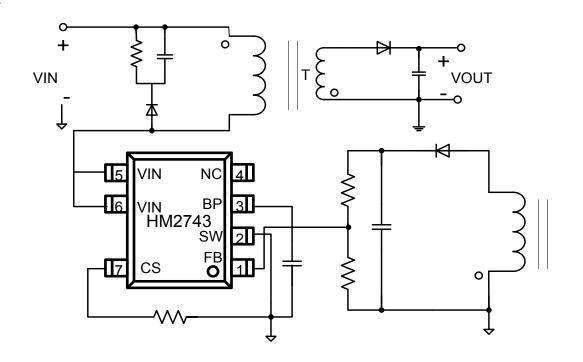

辅助供电

如果输出电压值比BP端电压高,可以通过连接二极管D3以及电阻R4提供芯片辅助供电电压并降低系统功耗。通过上述设置,BP端电压可在11.2V嵌位,芯片内部的控制器将会关闭。对于高于11.2V的输出电压,R4值可由以下公式计算:

$$R_4 = \frac{V_o - 11.2V}{230\mu A}$$


其它应用拓扑结构

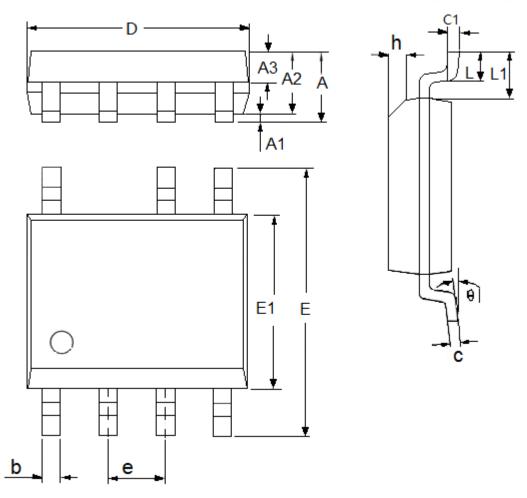
High-Side Buck-Boost



Boost

Flyback

PCB布局建议


在设计 HM2743 的 PCB 板时,需注意以下事项:

- (1)减小输入电容、芯片、整流二极管、电感及输出电容间的环路;
- (2) 在芯片 FB 管脚及 SW 管脚之间加值为几 nF 的电容,并尽可能靠近芯片;
- (3) VIN 管脚需焊接在铜箔面积较大的焊盘上,以提高散热性能。

封装信息

● 封装形式SOP7

参数	尺寸 (mm)		尺寸(Inch)	
	最小值	最大值	最小值	最大值
Α	1.35	1.75	0.0531	0.0689
A1	0.05	0.25	0.002	0.0098
A2	1.25	1.65	0.0492	0.065
A3	0.5	0.7	0.0197	0.0276
b	0.33	0.51	0.013	0.0201
С	0.17	0.25	0.0067	0.0098
D	4.7	5.1	0.185	0.2008
Е	5.8	6.2	0.2283	0.2441
E1	3.8	4	0.1496	0.1575
е	1.27(TYP)		0.05(TYP)	
h	0.25	0.5	0.0098	0.0197
L	0.4	1.27	0.0157	0.05
L1	1.04(TYP)		0.0409(TYP)	
θ	0	8°	0	8°
c1	0.25(TYP)		0.0098(TYP)	