HM2117

Dual 1A Low Dropout Regulator

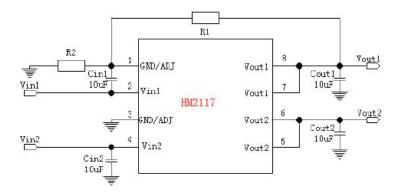
Features

- Dual channel output with each individual output can be either fixed output version or adjustable version.
- Maximum output current for each channel is 1A
- Range of operation input voltage: Max.12V

- Standby current of each output: 2mA(typ.)
- ➤ Line regulation: 0.1%/V (typ.)
- ➤ Load regulation: 10mV (typ.)
- ➤ Environment Temperature:-20°C~85°C
- ➤ Compatible with tantalum capacitor, electrolytic capacitor and MLCC.

Applications

- Power Management for Computer Mother Board, Graphic Card
- > LCD Monitor and LCD TV


- > DVD Decode Board
- > ADSL Modem
- ➤ Post Regulators for Switching Supplies

General Description

HM2117 is a dual channel low-dropout regulator that delivers a maximum current of 1A for each individual output. Typical dropout voltage at 1A load current is 1.3V. Each individual output voltage can be set independently as fixed voltage (e.g 1.2V,1.8V, 2.5V, 3.3V, 5V) or adjustable output which can provide an output voltage from 1.25 to 12V with two external resistors. The output accuracy of each channel is set within 2% by trimming.

HM2117 offers thermal shut down and current limit functions to ensure reliability of device and power system. Package input/output pin configuration can be customized on demand (i.e both output can share one input to save one input capacitor and corresponding PCB real estate). HM2117 is available in lead (Pb)-free ESOP-8 (with exposed pad for heat dissipation) package.

Typical Application

Application circuit of HM2117 fixed version

Oder Information

HM2117 1 2 3 4 5

Code	Description
1	Temperature&Rohs: C:-40°C ~85°C , Pb Free Rohs Std.
2	Package type: S8: ESOP-8
3	Packing type: TR: Tape&Reel (Standard)
4	CH1 Output voltage: e.g. 33=3.3V ; AD=ADJ
5	CH2 Output voltage: e.g. 33=3.3V ; AD=ADJ

Marking Description And Pin Configuration

Marking		HM2117 🗆 🗆 🗆					PIN	Symbol	Description
HM2117	Product Code						1	GND/ADJ	CH1 GND/ADJ
LLLL	Lot No.		8	7	6	5	2	Vin1	CH1 Input
XXYY	XX:		Vout1	Vout1	Vout2	Vout2	3	GND/ADJ	CH2 GND/ADJ
	Vol Output	Ш	Vc	₩ HM21		$V_{\rm C}$	4	Vin2	CH2 Input
	Voltage		GND/ADJ	XXYY LLLL XXYY	ADJ		5	Vout2	CH2 Output
	YY:	ے ا				22	6	Vout2	CH2 Output
	Vo2 Output Voltage			17 2 2	- 5 - 1 - 3 1	Vin2	7	Vout1	CH1 Output
							8	Vout1	CH1 Output

ABSOLUTE MAXIMUM RATING

Parameter		Value			
Max Input Voltage		12V			
Operating Junction Temperature(Tj)		125℃			
Ambient Temperature(Ta)		-20°C -85°C			
Package Thermal Resistance (jc) E	SOP8	10℃ / W			
Storage Temperature(Ts)		-40°C -150°C			
Lead Temperature & Time		260°C,10S			

Note:

- 1) Exceed these limits to damage to the device.
- 2) Exposure to absolute maximum rating conditions may affect device reliability.

RECOMMENDED WORK CONDITIONS

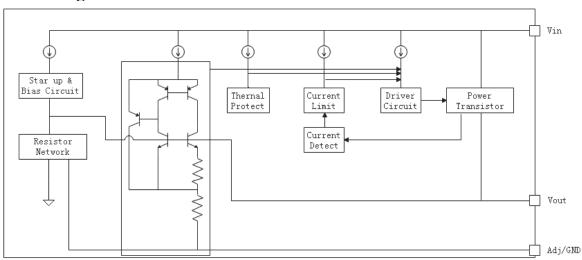
Parameter	Value				
Input Voltage Range	Max. 12V				
Ambient Temperature	-20℃ ~85℃				

Electrical Characteristics

*For each individual channel output

Test Conditions: Cin=0.1uF, Cout=10uF, T_A =25 $^{\circ}$ C, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vref	Reference voltage	HM2117-Adj 10mA≤Iout≤1A , Vin=3.25V	1.225	1.25	1.275	V
		HM2117-1.2V 0≤Iout≤1A , Vin=3.2V	1.176	1.2	1.224	V
		HM2117-1.8V 0≤Iout≤1A , Vin=3.8V	1.764	1.8	1.836	V
		HM2117-2.5V 0≤Iout≤1A , Vin=4.5V	2.45	2.5	2.55	V
Vout	Output voltage	HM2117-3.3V 0≤Iout≤1A , Vin=5.3V	3.234	3.3	3.366	V
		HM2117-5.0V 0≤Iout≤1A, Vin=7.0V	4.9	5	5.1	V
		HM2117-1.2V Iout=10mA, 2.7V≤Vin≤10V		0.1	0.2	%/V
		HM2117-ADJ Iout=10mA, 2.75V≤Vin≤12V		0.1	0.2	%/V
ΔVout	Line regulation	HM2117-1.8V Iout=10mA, 3.3V≤Vin≤12V		0.1	0.2	%/V
		HM2117-2.5V Iout=10mA, 4.0V≤Vin≤12V		0.1	0.2	%/V
		HM2117-3.3V Iout=10mA, 4.8V\(\sigma\) Vin\(\sigma\) 12V		0.1	0.2	%/V
		HM2117-5.0V Iout=10mA, 6.5V\(\section\) vin\(\section\) 12V		0.1	0.2	%/V
	Load regulation	HM2117-1.2V Vin =2.7V, 10mA≤Iout≤1A HM2117-ADJ		2	8	mV mV
		Vin =2.75V, 10mA≤Iout≤1A HM2117-1.8V		2	8	
		Vin =3.3V, 10mA≤Iout≤1A		3	12	mV
∆Vout		HM2117-2.5V Vin =4.0V, 10mA≤Iout≤1A		4	16	mV
		HM2117-2.85V Vin =4.35V, 10mA≤Iout≤1A		5	20	mV
		HM2117-3.3 Vin =4.8V, 10mA≤Iout≤1A		6	24	mV
		HM2117-5.0 Vin =6.5V, 10mA≤Iout≤1A		9	36	mV
Vdrop	Dropout	Iout =100mA		1.15	1.3	V
Imin	voltage Minimum load current	Iout=1A HM2117-ADJ		1.3	1.5	V mA
		HM2117-1.2V,Vin=10V		2	5	mA
Iq	Quiescent Current	HM2117-1.8V,Vin=12V		2	5	mA
		HM2117-2.5V,Vin=12V		2	5	mA
		HM2117-2.85V,Vin=12V		2	5	mA



		HM2117-3.3V,Vin=12V	2	5	mA
		HM2117-5.0V,Vin=12V	2	5	mA
IAdj	Adjust pin current	HM2117-ADJ Vin=5V,10mA≤Iout≤1A	55	120	uA
Ichange	Iadj change	HM2117-ADJ Vin=5V,10mA≤Iout≤1A	0.2	10	uA
ΔV/ΔΤ	Temperature coefficien		±100		ppm
$\theta_{ m JC}$	Thermal resistance	ESOP8	63		°C/W

Note1: All test are conducted under ambient temperature 25° C and within a short period of time 20ms

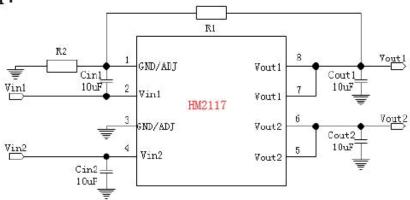
Note2: Load current smaller than minimum load current of HM2117-ADJ will lead to unstable or oscillation output.

Block Diagram

Detailed Description

HM2117 is a series of dual channel low-dropout regulator that delivers a maximum current of 1A for each individual output. Typical dropout voltage at 1A load current is 1.3V. Each individual output voltage can be set independently as fixed voltage (i.e. 1.2V, 1.8V, 2.5V, 3.3V, 5V) or adjustable output which can provide an output voltage ranges from 1.25 to 12V with two external resistors. The output accuracy of each channel is set within 2% by trimming.

The device has build-in modules including start-up circuit, bias circuit, bandgap, thermal shutdown, current limit, power transistors and driver circuit. Thermal shut down and current limit functions ensure reliability of device and power system. The bandgap module provides stable reference voltage whose temperature coefficient is compensated by careful design considerations. The temperature coefficient is under 100 ppm/°C. The accuracy of output voltage is guaranteed by trimming technique.


Package input/output pin configuration can be customized on demand (i.e both output can share one input to save one input capacitor and corresponding PCB real estate).

HM2117 is available in lead (Pb)-free ESOP-8 package

Typical Application

HM2117 has both fixed voltage version (1.2V, 1.8V, 2.5V, 3.3V, 5V) and adjustable voltage version. The input and output capacitors of each channel can be either tantalum, electrolytic or ceramic capacitor.

Typical Application shows both fixed voltage and adjustable voltage application schematic. Channel 1 (designated as pin 1\2\7\8) is a typical application of fixed voltage. Channel 2 (designated as pin 3\4\5\6) is the schematic of adjustable version application. The adjustable version provides a 1.25V reference voltage with regard to its ADJ pin (shown as PIN 5\6 as its output and PIN3 as its adjustable pin in Fig.3). The output voltage of adjustable version follows the equation:

$$V_{out}=1.25 (1+R_2/R_1)+I_{Adj}*R_2.$$

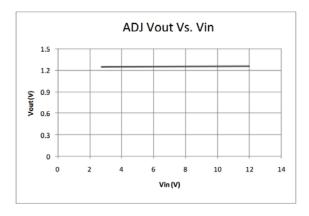
We can ignore IAdj because IAdj (about 50uA) is much less than the current of R1 (in the order of several milliamps).

- 1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125ohm or lower.
- 2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified. As R1 is normally in the range of $100\Omega^{\sim}500\Omega$, the value of C_{ADJ} should satisfy this equation: $1/(2\pi \times f_{ripple} \times C_{ADJ}) < R1$.

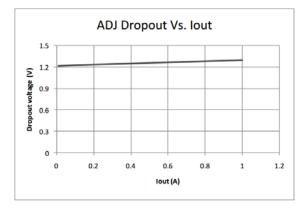
Thermal Considerations

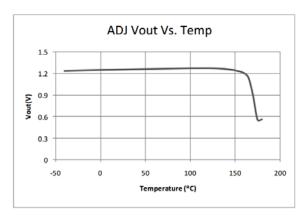
Thermal consideration has to be taken account into to ensure proper function of the device. Power dissipation of HM2117 can be calculated as

Power Dissipation = $(Vin1-Vout1)\times Iout1+ (Vin2-Vout2)\times Iout2$

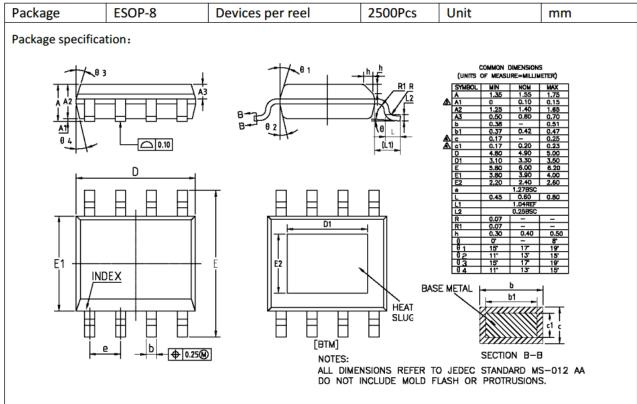

For proper function and safe operation of the device, power dissipation is recommended to be limited within 2W.

Typical Performance Characteristics(TA=25°C, unless otherwise noted)


Line regulation


Dropout voltage

Load regulation


Thermal performance with OTP

Package Information

